202 research outputs found

    Collapse of the Small‐Angle Magnon Scattering in Fe as a Function of Magnetic Field

    Full text link
    The dependence of the spin wave energy on the magnetization M⇒ and the applied magnetic field H⇒ in Fe (and other ferromagnets) has not been very well investigated with neutrons. According to the Holstein‐Primakoff dispersion relation, the contributions of the Zeeman energy gÎŒBHgÎŒBH and the dipole‐dipole interactions 4π gÎŒBM sin2Ξq4πgÎŒBMsin2Ξq do not simply add linearly to the exchange energy Dq2. However, in order to see these contributions, one must observe the very low energy (.01 – .1 mev) spin waves. One of the predictions of this dispersion relation is that the scattering of neutrons by spin waves near the origin should disappear as the magnetic field is increased. This is a consequence of the kinematics of the scattering process. Using our double‐Si crystal technique for small angle scattering we have experimentally observed this collapse at a field of about 8 kG in Fe at room temperature as predicted by theory. We have also measured the scattering due to these very low energy spin waves at temperatures up to .7 Tc and compared the data on an absolute scale with the theoretical cross section. The agreement is reasonably good.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/87920/2/1340_1.pd

    Incommensurate Spin Density Waves in Iron Aluminides

    Get PDF
    Neutron diffraction in Fe(Al) reveals incommensurate spin density waves (SDWs) in alloys known to be spin glasses. The wave vectors for crystals of Fe(34Al), Fe(40Al), and Fe(43Al) show n varying from 11 to 6 for →q=2π(h±1/n,k±1/n,l±1/n)/a0, where (h,k,l) and a0 characterize the parent bcc lattice of the CsCl structure. The magnetic reflections are present far above the spin-glass freezing temperatures. These SDWs keep the spins on nearest-neighbor Fe atoms close to parallel, in contrast with SDWs in Cr, which keep nearest-neighbor spins close to antiparallel

    First-principles calculations of magnetization relaxation in pure Fe, Co, and Ni with frozen thermal lattice disorder

    Full text link
    The effect of the electron-phonon interaction on magnetization relaxation is studied within the framework of first-principles scattering theory for Fe, Co, and Ni by displacing atoms in the scattering region randomly with a thermal distribution. This "frozen thermal lattice disorder" approach reproduces the non-monotonic damping behaviour observed in ferromagnetic resonance measurements and yields reasonable quantitative agreement between calculated and experimental values. It can be readily applied to alloys and easily extended by determining the atomic displacements from ab initio phonon spectra

    Controlled switching of N\'eel caps in flux-closure magnetic dots

    Get PDF
    While magnetic hysteresis usually considers magnetic domains, the switching of the core of magnetic vortices has recently become an active topic. We considered Bloch domain walls, which are known to display at the surface of thin films flux-closure features called N\'eel caps. We demonstrated the controlled switching of these caps under a magnetic field, occurring via the propagation of a surface vortex. For this we considered flux-closure states in elongated micron-sized dots, so that only the central domain wall can be addressed, while domains remain unaffected.Comment: 4 pages, 3 figure

    Magnetic Reversal on Vicinal Surfaces

    Full text link
    We present a theoretical study of in-plane magnetization reversal for vicinal ultrathin films using a one-dimensional micromagnetic model with nearest-neighbor exchange, four-fold anisotropy at all sites, and two-fold anisotropy at step edges. A detailed "phase diagram" is presented that catalogs the possible shapes of hysteresis loops and reversal mechanisms as a function of step anisotropy strength and vicinal terrace length. The steps generically nucleate magnetization reversal and pin the motion of domain walls. No sharp transition separates the cases of reversal by coherent rotation and reversal by depinning of a ninety degree domain wall from the steps. Comparison to experiment is made when appropriate.Comment: 12 pages, 8 figure

    Three-dimensional magnetic flux-closure patterns in mesoscopic Fe islands

    Get PDF
    We have investigated three-dimensional magnetization structures in numerous mesoscopic Fe/Mo(110) islands by means of x-ray magnetic circular dichroism combined with photoemission electron microscopy (XMCD-PEEM). The particles are epitaxial islands with an elongated hexagonal shape with length of up to 2.5 micrometer and thickness of up to 250 nm. The XMCD-PEEM studies reveal asymmetric magnetization distributions at the surface of these particles. Micromagnetic simulations are in excellent agreement with the observed magnetic structures and provide information on the internal structure of the magnetization which is not accessible in the experiment. It is shown that the magnetization is influenced mostly by the particle size and thickness rather than by the details of its shape. Hence, these hexagonal samples can be regarded as model systems for the study of the magnetization in thick, mesoscopic ferromagnets.Comment: 12 pages, 11 figure

    Magnetic Susceptibility of Multiorbital Systems

    Full text link
    Effects of orbital degeneracy on magnetic susceptibility in paramagnetic phases are investigated within a mean-field theory. Under certain crystalline electric fields, the magnetic moment consists of two independent moments, e.g., spin and orbital moments. In such a case, the magnetic susceptibility is given by the sum of two different Curie-Weiss relations, leading to deviation from the Curie-Weiss law. Such behavior may be observed in d- and f-electron systems with t_{2g} and Gamma_8 ground states, respectively. As a potential application of our theory, we attempt to explain the difference in the temperature dependence of magnetic susceptibilities of UO_2 and NpO_2.Comment: 4 pages, 3 figure

    Finite-size scaling in thin Fe/Ir(100) layers

    Full text link
    The critical temperature of thin Fe layers on Ir(100) is measured through M\"o{\ss}bauer spectroscopy as a function of the layer thickness. From a phenomenological finite-size scaling analysis, we find an effective shift exponent lambda = 3.15 +/- 0.15, which is twice as large as the value expected from the conventional finite-size scaling prediction lambda=1/nu, where nu is the correlation length critical exponent. Taking corrections to finite-size scaling into account, we derive the effective shift exponent lambda=(1+2\Delta_1)/nu, where Delta_1 describes the leading corrections to scaling. For the 3D Heisenberg universality class, this leads to lambda = 3.0 +/- 0.1, in agreement with the experimental data. Earlier data by Ambrose and Chien on the effective shift exponent in CoO films are also explained.Comment: Latex, 4 pages, with 2 figures, to appear in Phys. Rev. Lett

    Broken-symmetry-adapted Green function theory of condensed matter systems:towards a vector spin-density-functional theory

    Full text link
    The group theory framework developed by Fukutome for a systematic analysis of the various broken symmetry types of Hartree-Fock solutions exhibiting spin structures is here extended to the general many body context using spinor-Green function formalism for describing magnetic systems. Consequences of this theory are discussed for examining the magnetism of itinerant electrons in nanometric systems of current interest as well as bulk systems where a vector spin-density form is required, by specializing our work to spin-density-functional formalism. We also formulate the linear response theory for such a system and compare and contrast them with the recent results obtained for localized electron systems. The various phenomenological treatments of itinerant magnetic systems are here unified in this group-theoretical description.Comment: 17 page

    Novel critical exponent of magnetization curves near the ferromagnetic quantum phase transitions of Sr1-xAxRuO3 (A = Ca, La0.5Na0.5, and La)

    Full text link
    We report a novel critical exponent delta=3/2 of magnetization curves M=H^{1/delta} near the ferromagnetic quantum phase transitions of Sr1-xAxRuO3 (A = Ca, La0.5Na0.5, and La), which the mean field theory of the Ginzburg-Landau-Wilson type fails to reproduce. The effect of dirty ferromagnetic spin fluctuations might be a key.Comment: 4 pages, 5 figure
    • 

    corecore